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Summary and concluding remarks 

Using simple model calculations, the diffuse intensities 
of X-rays scattered from the substitutionally dis- 
ordered monoclinic form of 9-bromo-10-methyl- 
anthracene have been analysed. Qualitative agreement 
between observed and calculated diffuse intensity 
distributions was obtained using four primary corre- 
lation coefficients. Correlation coefficients between 
other molecular sites were assumed to be products of 
these coefficients. 

The correlation coefficients obtained from this 
analysis showed that correlations between molecular 
sites increased the number of short-range bromine- 
methyl contacts and decreased the number of bromine- 
bromine and methyl-methyl contacts relative to the 
random distribution of molecules over the molecular 
sites. 

The procedures used for this analysis are completely 
general and are readily implemented. They com- 
plement optical-simulation techniques since the latter 
are necessarily restricted to analyses of only zero-layer 
intensity distributions. 

The present method is semi-quantitative in that only 
qualitative features of the observed diffuse intensity 
distributions have been reproduced. More quantitative 
procedures must rely on the separation of thermal 
diffuse scattering (neglected in the present study) from 
the diffuse scattering resulting from substitutional 
disorder. Such a separation would then allow corre- 
lation coefficients to be determined via a least-squares 
analysis of the measured diffuse intensities. Studies in 
these directions are proceeding. 

We are grateful to Mr Malcolm Bruce for assistance 
in the implementation of computer programs on the 
PDP-I 1/45 used in this work. 
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Abstract 

With a least-squares program organization, as 
described by Busing [Acta Cryst. (1971), A27, 683- 
684], the constraints have to be put into a form where 

0567-7394/82/050618-06501.00 

the dependent parameters are expressed by the indepen- 
dent ones and, possibly, by further constants. Difficul- 
ties may arise if (1) several linear or non-linear 
constraints refer simultaneously to several parameters, 
and (2) if the constraints are not linear and cannot be 
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solved analytically for the dependent parameters. For 
both cases a solution is offered which is based on the 
application of the well known solution of linear 
equations. Non-linear constraints are linearized. If all 
constraints are linear, Busing's organization is retained; 
if they are (partly) non-linear, Busing's organization 
has to be changed in the main program, and the user's 
subroutine SETP has to be written according to a 
different concept. Hints concerning programming are 
given and some examples are discussed. 

organization can be retained. If the constraints are 
(partially) non-linear, then, with our proposal, BUS's 
organization must be altered in the main program and 
the user's subroutine SETP must be written according 
to a different concept. In the following, we treat linear 
and non-linear constraints separately, give hints con- 
cerning programming and discuss some examples. 

Linear constraints 

Introduction 

Busing (1971), hereafter BUS, when he described the 
organization of his program, left it up to the user to 
program the constraints on the parameters in a 
subroutine SETP. The derivatives between the param- 
eters, c~xi/Oxj, which are needed for structure-factor 
calculation, are then calculated in the main program by 
numerical differentiation. This procedure implies that 
the dependent parameters are specified and expressed 
by the remaining (independent) parameters and, pos- 
sibly, by further constants. In many cases this does not 
pose any problem, e.g. with symmetry constraints of a 
simple type like x 2 = Xl, etc. 

The dependent parameters are, however, not im- 
mediately given (1) if several linear (or non-linear) 
constraints simultaneously refer to some parameters, 
and (2) if the constraints are non-linear in the 
parameters and cannot analytically be solved for the 
dependent parameters. An example for the second case 
is the constraint that three bonds at a given atom are 
equally long; here the author would not know how to 
eliminate two parameters analytically or even 
numerically. It is the purpose of this paper to give a 
simple and generally applicable solution for both cases. 

There are two different ways of introducing physical 
information into the refinement: (1) the information is 
described by equations of constraint on the standard 
parameters, (2) the information leads to the definition 
of an extra set of appropriate independent parameters. 
Usually one of the two ways is clearly preferable. Well 
known examples for extra independent parameters are 
the rigid-body positional (Scheringer, 1963) and ther- 
mal parameters (Cruickshank, 1956; Schomaker & 
Trueblood, 1968), and parameters for imposing non- 
crystallographic symmetry and the identical-molecule 
constraint (Pawley, 1972). The above mentioned 
examples can be handled with the user's subroutine 
SETP as defined in BUS's program organization. This 
paper is mainly concerned with the first way of 
describing physical information. 

Our approach centres in applying the classical 
solution of linear equations (see e.g. Smirnow, 1954). 
Non-linear constraints are linearized. If all constraints 
are linear in the parameters, BUS's program 

Let the set of the n parameters x i be constrained by m 
linear equations of the form 

Ax = C. (1) 

A is of order m × n, x of order n x 1, and C of order m 
× 1. In order to evaluate the dependent parameters 
x de°, we apply the solution of linear equations which 
has been known for a long time (see e.g. Smirnow, 
1954). We choose n - m = k independent parameters 
X indep out of the set xi; for simplicity of notation we 
count these parameters first. We now divide A into two 
submatrices A 1 and A 2 which refer to the parameters 
x ~"dep and x de° and we can then rewrite (1) in the form 

A l X indep -t- A 2 X dep : C .  (2) 

AI is an m × k matrix, A 2 a non-singular m x m 
matrix, x i"dep of order k × 1 and x de° of order m × 1. 
Multiplication by A21 from the left then leads to 

x de° = - A 2 1  A 1 x i"de° + A21 C. (3) 

Equation (3) constitutes the prescription for writing 
SETP. The dependent parameters have to be specified 
from which A2 is defined. In many cases (with most of 
the symmetry constraints), A 2 is diagonal and SETP 
can immediately be written. The elements o f - A 2  ~ A~ 
are the derivatives c,.~ i-'q'dep/-q'indep/~,.~j which are needed for 
structure-factor calculation. Thus, these derivatives 
need not be calculated in the main program by 
numerical differentiation. 

Raymond (1972) has also established a procedure 
Ox~ /c3x) . In the for calculating the derivatives aep ~,deo 

Appendix, we compare our result (3) with Raymond's 
and show that our procedure is simpler in principle and 
usually simpler to apply. 

Non-linear constraints 

Instead of analyzing the non-linear constraints ex- 
plicitly in SETP, we linearize them. This means that the 
now linearized constraints do not refer to the param- 
eters themselves but only to (small) changes of the 
parameters (Scheringer, 1965). Hence, the problem of 
determining the dependent parameters is now posed in 
a different form and it is advantageous that we can 
apply the solution of linear equations. 
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Let the m non-linear functions of the parameters x be 
contained in the column matrix C(x). and the m values 
which these functions should assume in the column 
matrix C 0. Then the m constraints have the form 

C(x) = C 0. (4) 

In order to linearize these equations, we assume that 
the given parameters x satisfy (4) approximately, i.e. 
C(x) ~ C 0. We expand the difference between C O and 
C(x) into a Taylor series up to linear terms in the 
changes Ax, and obtain 

~gC(x)/~gx Ax = C o -  C(x). (5) 

By analogy with (1), we denote the derivatives 
OC(x)/0x by A and specify the dependent parameters 
again in such a way that we can subdivide A according 
to A = (ARIA2). Then the solution of (5) yields 

Ax dep = - - A 2  t A 1 z1x indep -4- A 2 1 [ C 0  - C ( x ) ] .  (6) 

In contrast to the case of linear constraints, the 
elements of A are no longer constants, and A t and A 2 

and C(x) have to be recalculated in every cycle of 
refinement. The dependent parameters are obtained 
from 

xdep vdep new = ~old + Axdep, (7) 

where vdep ~'o~d are the input parameters for a given cycle of 
refinement. The constraints are introduced by iteration, 
i.e. with the cycles of refinement. The differences C O - 
C(x), which may deviate from zero for the input 
parameters, are reduced in each cycle according to (6) 
and (7). In this way, the linear approximation which we 
have made with (5) becomes more and more valid, and 
the constraints are exactly fulfilled after a few cycles of 
refinement (in our experience with bond-length con- 
straints, in no more than three cycles). 

The advantage of this procedure is that it is generally 
applicable and that only the functions C(x) have to be 
differentiated with respect to the parameters x. 

Programming 

We have written two program versions for (only) linear 
and non-linear constraints respectively. Both versions 
are essentially organized as described by BUS. In the 
first version, S E T P  has to be written according to (3). 
In the second version, we have altered the main 
program and S E T P  according to (6) and (7). The 
parameter changes are used instead of the parameters. 
In the following, we refer to BUS's description (BUS, 
Fig. 1, steps 1-16, 28). Since in the beginning of a cycle 
no shifts ZIX inde° a r e  known, these shifts are set to zero 
in step 2 before S E T P  is called. In steps 2 and 28, the 
new dependent (and independent) parameters are 
calculated according to (7) after S E T P  is called. S E T P  
has to be programmed according to (6). Since, with the 

calculation of the derivatives dep indep c~x i /c~x~i in step 8, 
S E T P  is called in a loop, it is recommended that the 
elements o f - A ~  -1A t and A~-1[C0 - C(x)] are put in a 
second user's subroutine which we named SETA C, and 
pass these elements as constants into S E T P  (otherwise 
loop 8 may become unnecessarily time consuming). 
SETA C is only called in steps 2 and 28, before SETP.  

We may comment on a difference in the meaning of 
the 'numerical differentiation' in BUS's and our 
non-linear programs. With BUS, for non-linear con- 
straints, the derivatives c~xjcgxj are generated in the 
main program for the first time; with us, these 
derivatives are already known as elements o f - - A i  -t A t 
and are used in SETP.  In our programs, the purpose of 
steps 4-16 is only to select and store those derivatives 
which are actually needed in a given cycle. Since, with 
(6), this follows an equation which is linear in the 
changes Ax, the increments of the 'numerical differen- 
tiation' can be large (we have used values of unity), 
whereas BUS has to keep the increments sufficiently 
small (he used values of 2-10). 

Finally, we draw attention to a strategy for selecting 
the dependent parameters. Often there are several 
possibilities for the selection. In order to facilitate 
inversion of A 2 and keep the expressions obtained for 
(3) and (6) as small as possible, those parameters 
should be chosen as dependent ones which make A 2 as 
much as possible (block) diagonal and which place as 
many as possible zero elements into A 2. In this way, a 
computer inversion of A 2 can often be avoided and 
SETA C and S E T P  can be programmed directly. 

Examples 

Here we give three examples where several parameters 
are constrained simultaneously by (partly) non-linear 
constraints. 

The first example refers to the refinement of charge 
distribution models. Recently, we wanted to impose the 
neutrality condition for the charge parameters qi, 

qi = 0, in conjunction with the condition that the 
molecular dipole moment assumes a fixed value 
(Scheringer, 1982). This gives rise to the three further 
conditions ~ x i qi = la (one for each component of the 
dipole moment) on the positional and charge param- 
eters. Generally, A 2 is of order 4 × 4 and has, at best, 
three zero elements. 

Our second example, mentioned already in the 
introduction, is the condition that three bond lengths 
are equally long. Let these be three C - H  bond lengths 
at the same C atom, and the constraints have the form 

Ct(x) = d~.,c[C-H(1)l - dc2.,clC-H(2)l = 0. 

C2(x) = d~a.clC-H(1)l - d~a,clC-H(3)] = 0, 
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where d2a~¢ is the square of the bond length as 
calculated from the given parameters. A 2 is of order 
2 x 2. To get A 2 diagonal the first dependent param- 
eter has to be chosen from H(2) and the second from 
H(3). The worst choice in this case is to take the de- 
pendent parameters only from the C and/or H(1) atoms. 
The dependent parameters must depend strongly 
on the bond lengths, i.e. their direction should not 
be (approximately) perpendicular to the bond direction; 
otherwise the corresponding element of A 2 is (approxi- 
mately) zero and A 2 is (ill-conditioned) singular. 

Our third example is established from the structure 
of urea which we have refined recently (Guth, Heger, 
Klein, Treutmann & Scheringer, 1980)• Here we have 
the symmetry constraints y = x + ½ in the tetragonal 
system. In addition, we introduce bond-length con- 
straints for the N - C  and one N - H  bond. We discuss 
this example in detail, firstly, to show that writing of 
S E T P  is not always trivial although it may appear so 
and, secondly, to illustrate that 'simplifications' in the 
treatment lead to insufficient convergence. Let d 2 be the 
square of the fixed bond length, then 

d2(N-C 

C ° =  / d2(N--H) ] '  

\ / 
/ y(N) -- x(N) / 

C(x) = [ x ( N ) -  x(C)] r g l x ( N ) -  x(C)] 

~k[x(N) - x(H)]r g[x(N) -- x (H)] /  ' ( 8 ) y ( H )  -- x(H) 

where g is the metric tensor. With the C atom, only the 
z parameter can be varied. The derivatives 8C(x)/Sx 
are easily obtained in the tetragonal system as 
8d/[x(N), x(C)]/Sx(N) = 2 g l l [ x ( N ) -  x(C)], etc. We 
denote these derivatives as A ij and (5) assumes the 
form 

A1 1 0 0 

11 A12 AI3-A13 

,4~1 A22 A23 0 

0 0 0 

o o ol o o 

- A  21 - A  22 - -  

- 1  1 

x(N) y(N) z(N) z(C) x(H) y(H) z(H) 

Ax 
= C o -  C(x), 

(9) 

where the expressions from (8) have to be substituted 
into (9). The sequence of the parameters is written 
below the matrix of (9). In order to obtain a 
non-singular matrix A 2 we have to choose two of the 
dependent parameters from x(N), y(N) and x(H), y(H). 
In this case, it does not matter and we choose y(N) and 
y(H). The best choice for the other two dependent 

parameters is z(C) and z(H). z(N), x(N) or x(H) could 
also be used, but then A 2 has more non-zero elements 
[with x(N) and x(H) three more], the inversion of A 2 
takes more effort and the expressions obtained for (6) 
become longer. Since, in our case, A 13 and A 23 are large 
enough and A 2 is well conditioned with them, we 
choose z(C) and z(H) as further dependent param- 
eters. The corresponding columns of the matrix in (9) 
form the matrix A 2, and its inverse reads 

AI2 13 --1/A13 
A21 = 0 

~A 22/A 23 0 ° ° 1 
0 0 

0 1 

- 1/A 23 - A  22/A 2 

(10) 

According to (6), we find the following four equations 
which have to be programmed in S E T A  C and S E T P  

Ay(N) = Ax(N) + ½ + x(N) - y(N), (1 la) 

All + A12 
A z ( C ) -  Ax(N) + Az(N) 

A~a 

A12 
+ - - [ ½  + x ( N ) - y ( N ) ] -  {d2(N-C) 

A~3 

- a2a.¢lx(N), x(C)l }/A ,3, (1 lb) 

Ay(H) = Ax(H) + ½ + x(H) -- y(H), (1 le) 

A21 + A22 
A z ( H ) -  Ax(N) + Az(N) 

A 23 

A21 + A22 
Ax(H) 

A23 

A22 [½ + x ( Y ) - y ( Y ) l  
A23 

A22 [½ + x ( H ) - y ( H ) ] -  {d2(N-H) 
A23 

(11d) - dffalclx(N), x(H)l }/A 23" 

Obviously, the symmetry constraints (1 la) and (1 lc) 
are not affected by the bond-length constraints• This 
may lead one to conclude that the symmetry and 
bond-length constraints are independent of each other. 
This is not so because A z is not (and cannot be made) a 
2 x 2 block diagonal• We purposely set the two types 
of constraints to be independent of each other Jail terms 
with A 12 and A= vanish in (1 1)] and then looked at the 
convergence. The correct minimum is not reached and 
the bond-length constraints are not exactly introduced 
(only to about 0.001-0.0001 A) because the dependent 
shifts are not correctly calculated. With the correct 
form of (11), the constraints were introduced after the 
third cycle with an error of less than 10 5 A (with the 
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input parameters, the bond lengths deviated by 0-040 
and 0.008 A from their desired values, the symmetry 
constraints were exactly satisfied). Errors or simplifi- 
cations in the terms - A i  -1 A 1 and Ai-l[C0 - C(x)] mean 
that the constraints are not exactly introduced and that 
convergence is impaired. As a control, we recommend 
printing the elements of C o and C(x) in SETA C. 

With bond-length constraints, we used the squares of 
the bond lengths because they can be more easily 
obtained. Theoretically one could also use the bond 
lengths themselves. Then the elements A~j would also 
change but the derivatives OAx~/OAxj remain un- 
changed (as it should be) because all constant factors 
cancel in - A E 1 A I  . The expressions C 0 - C(x), 
however, differ from those calculated according to (8), 
but this does not matter since they converge to zero 
anyway. 

APPENDIX 
Comparison with Raymond's (1972) procedure of 

calculating the derivatives 

Raymond (1972), hereafter RAY, treated the cal- 
culation of derivatives between the parameters, for 
linear and non-linear constraints. Here we compare his 
results with ours contained in (3) and (6). RAY writes 
the equations of constraint in the form 

A dx = 0 (A 1) 

[RAY(2)], where 0 is the null matrix, and chooses n - 
m = k independent parameters vj which need not 
necessarily be a subset of the given parameters x i. Then 
he puts 

Bx=v,  B d x = d v  (A2) 

[RAY(3)], where B is of order k x n, and v of order 
k x 1. Now RAY combines (A 1) and (A2) according 
to 

[RAY(4)], whereby Q is defined. The derivatives 
c~x~/cgvj are, with RAY, all contained in the left n x k 
submatrix of Q-1. 

With RAY's  approach, the independent parameters 
v may be chosen quite generally. Our approach is 
defined by v = x indep, and then B = (El0), where E is 
the unit matrix. We prove the mathematical 
equivalence of both approaches (for this choice of v) as 
follows. We use A = (ALIA2), and invert Q algebraic- 
ally. Then 

Q =  AI A2 
which gives (E 0) 

Q - - 1  ~ 

--A21 A l A21  ' 
(A4) 

as can be shown by multiplying out QQ-~ = E. 
Equation (A4) shows that the derivatives, as they were 
determined in (3) and (6), - A ~  1 A 1, are identical to the 
lower left block of Q-~ (the upper block contains only 
the trivial derivatives unity and zero which are known 
in advance). Hence, the equivalence is proved. We 
remark that there is always a numerical solution with 
our procedure if there is one for RAY's because A 2 is a 
principal submatrix of Q, and thus A 2 is always as well 
conditioned as is Q. 

The comparison also shows that, with v = x indep, B = 
(El0), with RAY's  procedure too large a matrix is 
inverted and that the use of A 2 instead of Q should 
offer advantages, particularly when the matrix inver- 
sion is done by hand. The choice of v = x indep, B = 
(El0) does not imply a limitation in the treatment of the 
constraints (this choice is also preferred by RAY in his 
examples) but rather represents the simplest solution 
that can be used in actual practice. 

In order to demonstrate the advantage gained with 
the use of A 2 instead of Q, we discuss RAY's first 
example. There are six occupation factors Xl, ...,  x6 
which are subjected to the three constraints x5 = x4, x6 
= 2x4, and 

1 2 " 2 ( x l + x 2 ) +  14x 3 + 8 ( x  4 + x  s + x  6 ) = C .  (A5) 

RAY has put v~ -- x 1, v 2 = x 2, u 3 = X 3 and has then set 
up and inverted the 6 x 6 matrix Q. With a computer 
inversion of Q, the choice of the dependent parameters 
does not matter. With our approach this problem can 
easily be solved by hand. A 2 is of order 3 x 3. The 
inspection of A shows that, with RAY's  choice of 
the dependent parameters, seven elements of A 2 are 
non-zero. The better choice is v a = x 4, and now A 2 has 
only five non-zero elements. Although A 2 is not 
diagonal, the inversion is now trivial. With v 3 = x4, two 
equations are already in the solved form which we are 
looking for, i.e. x 5 = v 3, x 6 = 2v 3. Hence, only the third 
equation has to be solved for x 3 which yields 
immediately 

x 3 = - - 1 2 . 2 ( v  I + v2)/14-- 32v3/14 + C/14. (A6) 

With our treatment there are only five derivatives 
cgxt/Ov j which are different from 0 and 1, with RAY's  
there are nine (with v 3 = xa). The solution for this 
simple example can, of course, be found without 
discussing it in terms of A 2. But we point out that the 
inspection of A and the appropriate specification of the 
dependent parameters and A 2 always enables one to 
find the simplest solution. 
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A b s t r a c t  

Analytical expressions are derived relating the 
coefficients (, ,  fl, y, and 3) of the anharmonic 
one-particle-potential (OPP) model at a cubic site to the 
parameters of the higher cumulant expansion of the 
Debye-Waller factor• These expressions are used to 
derive the shape of the potential for the Al(4) site in the 
structure of VAI~0.42 from refinements of X-ray data 
measured at 100 K and room temperature, including 
third and fourth cumulant thermal parameters• Reason- 
able potentials are obtained at both temperatures• A 
negative value of fl indicates a softening of the potential 
in the ( 11 1) directions in contradiction to the results of 
previous pseudopotential calculations• A single set of 
potential parameters is obtained by least-squares fit to 
the cumulants at both temperatures• Deviations from 
the fit indicate a lower temperature dependence for the 
anharmonic terms than predicted by the OPP model• 
Corrections for quantum statistical effects are small at 
both temperatures• 

I n t r o d u c t i o n  

Aside from interest in anharmonic motion itself, an 
accurate description of the thermal motion is required 
in many applications which utilize precise diffraction 
data, such as measuring the electron density distri- 

* On leave from the Department of Physics, University of 
Helsinki, Helsinki 17, Finland. 

bution in crystals• When high-resolution measurements 
are present in the data set, the neglect of anharmonic 
motion will introduce additional noise in experimental 
density maps (see, for example, Stevens, 1979; Stevens, 
DeLucia & Coppens, 1980)• In addition, multipole 
modeling, which may be used to derive an estimate of 
the static electron distribution, requires a proper model 
of thermal smearing to avoid correlations with param- 
eters describing the electron distribution. 

Deviations from harmonic thermal motion may be 
accounted for in the temperature factor in several ways• 
A general expansion of the temperature factor in terms 
of higher cumulants has been introduced by Johnson 
(1969), 

i i 3 
T(h) = exp ~ c2~x" h~ hj + ~ {3~a:/J* h~ hi h,  

• 3! 

,4 } 
+ - -  {4)tciJkl h i h j  h k h I + ... (1 a) 

4! 

or equivalently, 

T(h) = exp (--27r 2 b ij a* a* h i h i 

47~ 3 
-- i - -  C ijk a~ a~. a~ hihih k 

3 

2rc----~43 diJk' a* a* a~ a'~ hihjhkh ' + . . . ) ,  (lb) 
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